

1

Gas Path Analysis (GPA)

(Courtesy of Urban L. A. AGARD-CP-165, 1975)

Engine fault and parameter relationship

Fault tree & Fault Matrix

Туре	Fault	тп	SH	P m _f	CPR	Vibration	Indication
Turbine (Generator)	Rotor Damage Nozzle Erosion	↑ ↑	↑ ↑	↑ ↑	↑ ↓	Yes No	η, Low m√T₃/P₃ High
Turbine (Power)	Rotor Damage Nozzle Erosion	0 ↓	↓	0 ↓	0 ↓	Yes No	n, Low, EGT High m√T₄/P₄ High
Compressor	F.O.D. Dirty	↑ ↓	↓	↑ ↓	Ļ	Yes No	η _c Low, m ₁ Low η _c Low

Performance Simulation & Diagnostics

Simulation

Diagnosis

5

Gas Path Analysis (GPA)

Direct matrix inverse approach

Engine model:

Expansion:

Linear engine

model:

Solution:

 $\vec{z} = h(\vec{x})$ 0 – Nominal diagnostic point $\vec{z} = h(\vec{x}_0) + \frac{\partial h(\vec{x})}{\partial x}(\vec{x} - \vec{x}_0) + \text{HOT}$ $\vec{z} = \vec{z_0} + \frac{\partial z}{\partial x}(\vec{x} - \vec{x_0})$ $\Delta \vec{z} = H \cdot \Lambda \vec{x}$ (ICM) $\Delta \vec{x} = H^{-1} \cdot \Delta \vec{z}$ (FCM) $\Delta \mathbf{x}$ 0

Linear engine model: $\Delta \vec{z} = H \cdot \Delta \vec{x}$

Non-dimensional linear engine model:

Inverse of a square matrix:

 $\Delta \vec{z} = H \cdot \Delta \vec{x} \iff \Delta \vec{x} = H^{-1} \cdot \Delta \vec{z}$ $H = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ $H^{-1} = \frac{1}{|H|} \cdot \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$ Adjoint of *H* Determinant of $H = |a_{11} * a_{22} - a_{21} * a_{12}|$

GPA solution for different sensor numbers:

Sensor number > number of health parameters:

$$\Delta \vec{z} = H \cdot \Delta \vec{x} \qquad \longleftrightarrow \qquad \begin{pmatrix} \Delta z_1 \\ \Delta z_2 \\ \Delta z_3 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} \cdot \begin{pmatrix} \Delta x_1 \\ \Delta x_2 \end{pmatrix}$$

$$H^{T} \cdot \Delta \vec{z} = H^{T} \cdot H \cdot \Delta \vec{x}$$
$$(H^{T} \cdot H)^{-1} \cdot H^{T} \cdot \Delta \vec{z} = \Delta \vec{x}$$
$$\Delta \vec{x} = H^{\#} \cdot \Delta \vec{z}$$

(Pseudo inverse matrix) ISABE short course material by Dr Yiguang Li, Cranfield University, 21-24 September 2022

GPA solution for different sensor numbers:

Sensor number = number of health parameters:

$$\Delta \vec{x} = H^{-1} \cdot \Delta \vec{z}$$

Sensor number > number of health parameters:

$$\Delta \vec{x} = H^{\#} \cdot \Delta \vec{z} = (H^T \cdot H)^{-1} \cdot H^T \cdot \Delta z$$

Sensor number < number of health parameters:

$$\Delta \vec{x} = H^{\#} \cdot \Delta \vec{z} = H^T \cdot (H \cdot H^T)^{-1} \cdot \Delta z$$

The result is best in a least-squares sense

$$\Delta \vec{z} = H \cdot \Delta \vec{x}$$

Assumptions for GPA:

- A set of accurate measurement deltas (Δz) is available
 - repeatable, free of measurement noise & bias
- The linear model represents engine performance accurately around a reference point
- The ICM (*H*) is invertible

Potential capabilities of linear GPA:

- Simple
- Fast
- Fault detection
- Fault isolation
- Fault quantification
- Deal with multiple faults

Challenges for linear GPA:

- Data repeatability
- Non-linearity
- Selection of measurements
- Smearing effect

Solutions to Challenges for linear GPA:

- Measurement noise
 noise filter
- Sensor fault

- sensor diagnosis to exclude faulty sensors
- Data uncertainty due to other factors – changing ambient and operating conditions, etc.
- data corrections

Solutions to Challenges for linear GPA:

- Non-linearity of engine performance Non-linear GPA

Convergence of non-linear GPA:

- Under-relaxation
- Convergence criteria:

$$\Delta \vec{z}_{sum} = \sum_{j}^{M} \left| \Delta z_{meas_{j}} - \Delta z_{cal_{j}} \right| < \delta$$

ISABE short course material by Dr Yiguang Li, Cranfield University, 21-24 September 2022

15

Selection of instrumentation sets

Solutions to Challenges for linear GPA:

- Selection of measurements

CASE S	TUDY	- A						ENGINE: RR AVON (2 - SHAFT)						
HANDL	E: SHE	.						FAULT LEVEL: FI = 1%						
VAR	1	2	з	4	5	6		8	9	10	11	12	13	
N1	×	×	×	×	×	×	×					×	×	
РЗ			~ ~ ~ ~			×		~ ~ ~					×	
тэ	×												×	
P6					×								×	
тб		×						×					×	
WEE							×				×		×	
P8													×	
тө			×						×				ж	
P9		-					~	×	×	×	×	×	×	
т9				×	l		_			×			×	
SHP														
ETAC1	×	×	×	×	×	×	×	×	×	×	×	×	×	
NDMC1	×	×	×	×	×	×	×	×	×	×	×	×	×	
ETAT1														
NDMT1		-												
ETATPT		-												
NDMPT							-							
RMS														
LPGA	0.767	0.652	0.629	0.621	0.724	0.730	0.575	2.213	2.124	2.122	2.086	0.978	0.678	
NLPGA	0.108	0.097	0.123	0.124	0.219	0.214	0.108	0.091	0.086	0.197	0.118	1.523	0.053	
													~ ~~ /	

Selection of instrumentation sets

Solutions to Challenges for linear GPA:

- Selection of measurements
 - Availability
 - Number of sought faults & health parameters
 - Sensitivity
 - Correlation
 - Redundancy

- Selection of measurements - sensitivity

SENSITIVITY ANALYSIS BAR CHART

- Selection of measurements - correlation

$$n_{i,j} = s_{i,j} / \|s_i\| \longrightarrow Q = P \cdot P^T \qquad \|c_i\| = \sqrt{\sum_{h=1}^{L} (c_{i,h})^2} = \sqrt{(c_{i,1})^2 + \dots + (c_{i,L})^2}$$

		I										High	noet	
	P3	T3	P5 (15	P9	Т9	P11	T11	P12	T12	FF (i liyi		
P3	1	0.9295	0.5920	0.4816	0.8221	0.4940	0.3761	-0.4570	0.6782	-0.3915	0.64	corre	lation	2.3010
T3	0.9295	1	0.4653	0.5341	0.7059	0.4987	0.1789	-0.5242	0.5267	-0.3642	0.4400	0.6226	-0.2241	2.112
P5	0.5920	0.4653	1	0.7496	0.7803	-0.2385	0.6211	-0.7063	0.7303	-0.6414	0.7316	0.6952	0.3863	2.406
T5	0.4816	0.5341	0.7496	1	0.4816	-0.4600	0.1797	-0.9936	0.3874	-0.6615	0.2472	0.4576	0.3463	2.126
P9	0.8221	0.7059	0.7803	0.4816	1	0.2957	0.7218	-0.4251	0.8101	-0.5065	0.8648	0.8503	-0.0392	2.4878
Т9	0.4940	0.4987	-0.2385	-0.4600	0.2957	1	0.0929	0.4767	0.1619	0.2313	0.2597	0.1991	-0.5957	1.620
P11	0.3761	0.1789	0.6211	0.1797	0.7218	0.0929	1	-0.0901	0.5769	-0.4370	0.8186	0.5104	0.1050	1.8960
	-0.4570	-0.5242	-0.7063	-0.9936	-0.4251	0.4767	-0.0901	1	-0.3747	0.5970	-0.1908	-0.4359	-0.3612	2.059
P12	0.6782	0.5267	0.7303	0.3874	0.8101	0.1619	0.5769	-0.3747	1	-0.2205	0.9011	0.7732	0.1037	2.2462
T12	-0.3915	-0.3642	-0.6414	-0.6615	-0.5065	0.2313	-0.4370	0.5970	-0.2205	1	-0.4026	-0.4203	-0.2537	1.8558
FF	0.6406	0.4400	0.7316	0.2472	0.8648	0.2597	0.8186	-0.1908	0.9011	-0.4026	1	0.7310	0.0573	2.2878
PCN1	0.7072	0.6226	0.6952	0.4576	0.8503	0.1991	0.5104	-0.4359	0.7732	-0.4203	0.7310	1	0.0039	2.258
PCN2	-0.2336	-0.2241	0.3863	0.3463	-0.0392	-0.5957	0.1050	-0.3612	0.1037	-0.2537	0.0573	0.0039	1	1.396

CORRELATIONS MATRIX

ISABE short course material by Dr Yiguang Li, Cranfield University, 21-24 September 2022

- Selection of measurements – sub-set & redundancy

No.	Final Measurement Parameter	Ind.
1	IP Compressor Exit Pressure	P3
2	IP Compressor Exit Temperature	Т3
3	HP Compressor Exit Pressure	P5
4	HP Compressor Exit Temperature	T5
5	HP Turbine Exit Pressure	P9
6	IP Turbine Exit Pressure	P11
7	Power Turbine Exit Temperature	T12
8	Fuel Flow	FF
9	IP Compressor Speed	PCN1
10	HP Compressor Speed	PCN2

Solutions to Challenges for linear GPA:

- Smearing effect / fault isolation

Fault isolation using
 "Component Fault
 Cases (CFC)" concept

Component Fault Case	Pre-defined faulty components
CFC1	Compressor
CFC2	Burner
CFC3	Turbine 1
CFC4	Turbine 2
CFC5	Compressor + Burner
CFC6	Compressor + Turbine 1
CFC7	Compressor + Turbine 2
CFC8	Burner + Turbine 1
CFC9	Burner +Turbine 2
CFC10	Turbine 1 + TURBINE 2

GPA Index and fault isolation

GPA Index and fault isolation

Compon ent Fault Case	Pre-defined faulty components
CFC1	Compressor
CFC2	Burner
CFC3	Turbine 1
CFC4	Turbine 2
CFC5	Compressor + Burner
CFC6	Compressor + Turbine 1
CFC7	Compressor + Turbine 2
CFC8	Burner + Turbine 1
CFC9	Burner +Turbine 2
CFC10	Turbine 1 + TURBINE 2

GPA Index and fault isolation

Predicted engine degradation (Implemented fault: compressor $\Delta \eta_c$ =-2.5, $\Delta \Gamma_c$ =-4.5)

		CFC1	CFC5	CFC6	CFC7
Compressor	$\Delta \eta_c$	-2.479	-2.544	-2.560	-2.616
	$\Delta\Gamma_{\rm c}$	-3.577	-3.633	-3.622	-3.766
Burner	$\Delta \eta_b$		0.375		
Turbine 1	$\Delta \eta_{t1}$			0.222	
	$\Delta\Gamma_{t1}$			0.252	
Turbine 2	$\Delta \eta_{t2}$				0.296
	$\Delta\Gamma_{t2}$				0.089

	Linear GPA	Non-linear GPA
Accuracy:	Low	Higher in general
Computation time:	Short	Slightly Longer
Convergence	No problem in general	May diverge

Well defined GPA

Poorly defined GPA

Example of using GPA

Performance analysis of a simple 1-spool Turbojet

Power setting parameter / Handle: TET

Simulation through Turbomatch – Webengine Ver 3.0 Copyright © 2022 Cranfield University, United Kingdom

Example of using GPA

Faulty Component: compressor

Health parameters:

parameters:

Measurement

Example of using GPA

$$\vec{z} = h(\vec{x})$$

$$\Delta \vec{z} = H \cdot \Delta \vec{x} \quad \Longrightarrow \quad \Delta \vec{x} = H^{-1} \cdot \Delta \vec{z}$$

- **Step 1: Calculate ICM** H
- **Step 2: Calculate FCM** H^{-1}
- Step 3: Calculate measurement deviation
- Step 4: Calculate health parameter deviation

Cranfield Aerospace

ISABE short course material by Dr Yiguang Li, Cranfield University, 21-24 September 2022

$\boldsymbol{H} = \begin{pmatrix} 1.377915 & -0.7401 \\ 0.40953 & -0.70332 \end{pmatrix}$

Gas Path Analysis (GPA) – Step 2

$$H = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
$$H^{-1} = \frac{1}{|H|} \cdot adj H$$

Determinant of H:
$$|H| = a \cdot d - c \cdot b$$

Adjoint of H: $adj H = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

Determinant of H: $|H| = a \cdot d - c \cdot b$ $|H| = 1.377915^{*}(-0.70332) - 0.40953^{*}(-0.7401)$ = -0.666027

$$H = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1.377915 & -0.7401 \\ 0.40953 & -0.70332 \end{pmatrix}$$

Adjoint of H: $adj H = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

$$adj H = \left(\begin{array}{cc} -0.70332 & 0.7401 \\ -0.40953 & 1.377915 \end{array}\right)$$

(replacing each in H with its cofactor and transposing the result)

Inverse of H:
$$H^{-1} = \frac{1}{|H|} \cdot adjH$$

$$H^{-1} = \frac{1}{-0.666027} * \begin{pmatrix} -0.70332 & 0.7401 \\ -0.40953 & 1.377915 \end{pmatrix}$$
$$H^{-1} = \begin{pmatrix} 1.055996 & -1.11121 \\ 0.614884 & -2.06886 \end{pmatrix}$$

Linear engine GPA model:

$\begin{pmatrix} \Delta \Gamma_c / \Gamma_c \\ \Delta \eta_c / \eta_c \end{pmatrix} = \begin{pmatrix} 1.055996 & -1.11121 \\ 0.614884 & -2.06886 \end{pmatrix} * \begin{pmatrix} \Delta P_3 / P_3 \\ \Delta T_3 / T_3 \end{pmatrix}$ $\Delta \vec{x} = H^{-1} \cdot \Delta \vec{z}$

Clean		Compressor					
Measurement:	Clean engine	Δης/ης	ΔΓc/Γc	ΔPRc/PRc			
		0.0	0.0	0.0			
	Magguramant	P3	}	T3			
	Wieasurement	8.692	212	561.62			
Degraded	Desmaled		Compresso	or			
Measurement:	Degraded	Δης/ης	ΔΓς/Γς	ΔPRc/PRc			
	engine	?	?	?			
	Measurement	P3		Т3			
$\lceil \wedge P \rceil$	Wiedbul ement	8 <mark>.386</mark>		558.36			
$\begin{vmatrix} \frac{\Delta I_3}{P_3} \\ \Delta T_3 \end{vmatrix} \times 100 9$	$\left[\frac{\Delta P_3 / P_3}{\Delta T_3 / T_3} \right] *100 =$	8.386-8.69 8.69212 558 36-561	212 *100 =	$\left[\begin{array}{c} -3.52181\\ -0.58046 \end{array} \right]$			
$\begin{bmatrix} \overline{T_3} \end{bmatrix}$ ISABE short cou	urse material by Dr Yigu	$\frac{550.50050}{561.62}$	niversity, 21-24 Septe	mber 2022 42			

$$\Delta \bar{x} = H^{-1} \cdot \Delta \bar{z}$$

$$\begin{pmatrix} \Delta \Gamma_c / \Gamma_c \\ \Delta \eta_c / \eta_c \end{pmatrix} = \begin{pmatrix} 1.055996 & -1.11121 \\ 0.614884 & -2.06886 \end{pmatrix} * \begin{pmatrix} -3.52181 \\ -0.58046 \end{pmatrix} = \begin{pmatrix} -3.074 \\ -0.96461 \end{pmatrix} %$$

 $RMS = \{ [(-3+3.074)^2 + (-1+0.96461)^2]/2 \}^{0.5} = 0.0580039$